This category consists of knowledge, beliefs and understanding acquired in the academy, in preparation (intentionally or otherwise) for their role in the classroom. Such knowledge and beliefs inform pedagogical choices and strategies in a fundamental way. The key components of this theoretical background are: knowledge and understanding of mathematics per se and knowledge of significanttracts of the literature and thinking which has resulted from systematic enquiry into the teaching and learning of mathematics. The beliefs component relates to convictions held, and values espoused, by prospective teachers. Such beliefs typically concern different philosophical positions regarding the nature of mathematical knowledge, the purposes of mathematics education, and the conditions under which pupils will best learn mathematics